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A mathematical model of the main stages of the process of ultrasonic detection of deep three-dimensional cracks of arbitrary 
orientation in a uniform medium and of horizontal interfacial cracks is developed using a single boundary-integral approach. A 
description of the construction of the asymptotic form of the source field and of the calculation of both the energy scattering 
coefficient and the generalized Auld electromechanical coupling coefficient is given. Numerical results are presented which show 
how the scan-image of the crack depends on the ratio of its dimensions to the wavelength, on the form and orientation in space, 
and also the effect of the ratio of the elastic properties of the materials on the scattering coefficient of an interfacial crack situated 
between them. 0 2002 Elsevier Science Ltd. All rights reserved. 

The interpretation of the data of ultrasonic non-destructive testing is traditionally based on ray methods 
of general diffraction theory [l]. In view of the asymptotic nature of the ray approach, it is only used 
in the high-frequency band, when the wavelength of the probing signal is much less than the characteristic 
dimensions of the defect. On the other hand, if the dimensions of the defect are comparable with or 
less than the wavelength, the use of reliable mathematical models becomes particularly important, since 
the reflection field in this case gives a very blurred image due to diffraction, which requires special 
processing to establish the size and shape of the defect. In mathematical modelling, the integral approach 
is usually used here instead of the ray approach, in which the problem of diffraction is reduced to 
boundary integral equations in the unknown jump in the displacements on the crack edges [2-51. The 
reflection field in this case is described by an accurate integral representation, from which one can obtain 
the asymptotic form in the far zone, that ,is similar to the asymptotic form given by the ray method. In 
this sense the integral approach is more general - it can be used over the whole frequency band. Although 
the solution of the integral equation also gives rise to certain difficulties at high frequencies, they can 
be completely overcome [5]. 

On the whole, however, solving the boundary integral equations involves considerably greater 
computational costs than the construction of ray asymptotic forms. The computational costs increase 
particularly if cracks that are not of classical shape (a circle or a strip) but have a shape that is arbitrary 
in plan are considered, which requires the use of a grid approximation and the evaluation of multiple 
integrals with hypersingular kernels on discretization [2]. The use of axisymmetric basis functions enables 
these problems to be surmounted and reduces computational costs to a level that is acceptable when 
the method is employed on a personal computer (a detailed description with a brief review of relevant 
papers can be found in [4, 81). This provides a basis for developing an effective mathematical model, 
including the main stages of ultrasonic monitoring: 1) a description of the wave field of the source 
uo, 2) the solution of the problem of diffraction by the crack, and 3) recording of the reflected 
signal u: and the construction of an image of the defect, obtained by scanning. 

The structure of the model is the same as in [3], but here we use other mathematical methods. In 
particular, the variational-difference method [4] enables us to consider not only circular cracks, as in 
[3], but also cracks of arbitrary shape in plan. 

Situations are encountered in practice when the crack lies between materials of different moduluses. 
This may be a peeling region in welded, glued or metal-ceramics joints, in multilayered composite 
materials, etc. The presence of interfaces gives rise to additional reflected, refracted and interfacial or 
channelled waves, which make it difficult to distinguish the signal reflected from the defect on their 
background. These difficulties are expressed mathematically as a complication of the structure of the 
waves incident on the crack and of the kernel of the boundary integral equations. 
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1. A GENERAL DESCRIPTION OF THE MODEL 

The sample under test is modelled by an elastic isotropic half-space which occupies a volume --m s x1, 
yl s 00, -00, s z1 s 0 in a Cartesian system of coordinatesxl = {xl,yl,zl}. The medium can be uniform, 
containing an arbitrarily oriented crack, occupying the plane region Q, or double-layer (or even 
multilayer) with an interfacial crack in the plane z1 = -h, where the layers are glued together (Fig. 1). 

We will assume that the crack is situated fairly far from the outer surface of the sample, so that the 
field reflected for a second time from the surface can be neglected. In the case of surface cracks of 
cracks which reach the surface, allowance for signal rereflection between the crack and the surface leads 
to an integral equation of more complex form. 

In this model, the medium is assumed to be isotropic and infinitely extended in a horizontal direction. 
The necessary physical and mathematical correctness is ensured by using the principle of limiting 
absorption, which is equivalent to the requirement of energy radiation at infinity [6]. 

On the outer surface z1 = 0 there is a source of harmonic oscillations (an ultrasonic transducer), the 
action of which is modelled by a specified surface load q. 

7(x1 k-rot I,, =o= 
q&,. ylk-iw, (x,,Y,)E D 

0, (x,.YI)~ D 
0.1) 

Here 7 = {Q,,,, ~yl117 ozl} is the surface stress vector and D is the contact area between the ultrasonic 
source and medium. The contact area can be arbitrary (and also disconnected: D = ukDk for a system 
of sources). The type of source (directional or non-directional, of longitudinal or transverse waves, etc.) 
is defined by the form of the function qo. 

A specified load excites an initial wave field uo(xi) in the elastic medium. Diffraction of this field by 
the crack gives rise to a field of reflected waves ui(xi) (the harmonic factor is omitted here and 
henceforth). 

The crack is modelled by a cut of infinitesimal width with stress-free sides 

(70 + 71) lzzo= 0, (XV Y) E fi (1.2) 

Here x = {x, y, z} is a local system of coordinates, connected with the crack (the Oz axis coincides with 
the normal to it), 7, = Tg, (n = 0, 1) and T, is the stress operator for an area with normal Oz. 
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The field u. is continuous over the whole volume, while the reflected field is discontinuous on the 
cut Q with a jump 

v(x9 Y) = u,(x) lzzo+ --u,(x) II=,_ f 0, (x9 Y) E Q (I-3) 

Using Green’s matrix for the half-spaces z 2 0 and z s 0, the reflected field UT can be expressed in 
the form of oscillating contour integrals containing the unknown jump v, which is determined from the 
system of integral equations which is obtained when condition (1.2) is satisfied [4] 

SJ = jj 1(x - 5. Y - rlM5, N&&l = f(x, YA (x, y) E n (1.4) 
n 

f(x, Y) = -70 lzco 

An asymptotic analysis of the integral representations for II:, as before [4], gives fairly simple formulae, 
which enable us to construct the radiation pattern of the reflected field and obtain the values of its 
amplitude at required points where the signal is recorded. 

Moreover, using the solution of integral equation (1.4) we can calculate the generalized Auld reflection 
coefficient 6r [7] (or the argument of the electromechanical dependence according to [3]), which 
describes the change in the signal recorded by the piezoelectric receiver, caused by the presence of the 
defect. For an arbitrary internal defect, surrounded by a surface S, 

al-=- i0 4psI (u2 ‘71 -U, .T2)dS (U.T=C UjZj) 

s i 
(1.5) 

where 71 and 72 are the stresses on the surface S corresponding to the fields u1 and u2, where we take 
as the first the field excited by a certain piezoelectric source in the body without a defect, while u2 is 
the field of the other source when the defect is present, and P is a certain quantity, proportional to the 
square of the amplitude of the electric signal of the source. Note that the dot in (1.5) denotes the sum 
of the products of the vector components without complex conjugation, i.e. it is not the scalar product 
of vectors. 

Representation (1.5) also holds when the positions of the sources coincide. In this case we take as 
the first the initial field of the source uo, and as the second we take ug + ul. In particular, for a crack 
with stress-free edges, when conditions (1.2) and (1.3) are satisfied, representation (1.5) reduces to the 
form 

The approximation of the integral of the finite sum follows in a natural way from the expansion of 
the unknown jump v in basis functions (pk, specified at the nodes (xk, yk) of the grid corresponding to 
the variational-difference method of solving the system of integral equations (1.4) [4]. In this case 
ck = v(+, yk) is the value of the jump at nodes, found from the linear algebraic system to which Eqs 
(1.4) reduce on discretization (see (1.6) in [4]), while fk = f(xk, yk) form the right-hand side of this system. 

The coefficient &I? is the ideal means of modelling, since it describes a quantity that can be directly 
measured. In the pulse-echo method, when the reflected signal is recorded at the point of radiation, 
the coefficient SF, for fixed parameters of the model, depends on the coordinate (x0, yo) of the position 
of the source-receiver on the surface z1 = 0. Here the function GI’(xo, yo) gives the same image as is 
obtained when scanning with an ultrasonic transducer over the surface of the material being probed. 
One thereby eliminates the need to construct the radiation pattern of the scattered field and to trace 
the signal from the defect to the receiver. 

Details of the realization of this model and also an analysis of the scan images obtained using it for 
rectangular and L-shaped cracks depending on their shape, spatial orientation, the directivity of the 
source and the frequency are given in an unpublished paper.t 

As an example we show in Fig. 2 the form of GT(xo, yo) for a horizontal L-shaped crack when scanning 
with a normally incident wave from a circular probe of radius 5 mm at frequenciesf = 0.5, 1, 1.5 and 

tYEKHLAKOV, A. B., The use of the generalized reflection coefficient to determine the dimensions and shape of three-dimen- 
sional cracks. Deposited at the All-Union Institute for Scientific and Technical Information, No. 3338-VOO, 29 December 2000. 
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Fig. 2 

2 MHz (W is in decibels andxo andyo are in millimetres). In order to compare the results, the parameters 
here and henceforth are the same as before [3], with the exception of the crack shape. The crack area 
is taken to be the same as for a circular crack of unit radius; the crack depth is 30mm and the material 
is steel with %=5940 m/s and v, = 3230 m/s. 

This example illustrates how the clarity of the scanned image depends on the ratio of the wavelength 
and the dimensions of the object. It can be seen that the image obtained at a frequency of 0.5 MHz 
does not enable one to determine exactly the dimensions and shape of the crack without special 
processing, equivalent to solving the inverse problem. Clear outlines only appear at a frequency of 
2 MHz, when the ray method can start to be used. The ray method cannot be used to construct the 
objective function of the inverse problem at lower frequencies. 

It is interesting to note that, in view of diffraction effects when the frequency changes, the blurred 
low-frequency image seems to rotate around the axis perpendicular to the plane of the figure. This 
rotation can be seen more clearly in the case of an oblong rectangular crack, which is presented in the 
paper cited in the footnote. 

2. THE SOURCE FIELD 

When solving the diffraction problem it is usually assumed that a plane P- or S-wave is incident on the 
crack at a certain angle to the normal n. This enables the dependence of the scattering coefficient E 
and the radiation pattern on the angle of incidence and the frequency to be investigated, but to calculate 
GT(xo, yo) the incident field must be related to the source. 

In the case of a non-interfacial crack the wave field excited in a uniform elastic half-space of a surface 
load qo, as is well known, can be expressed in integral form in terms of Green’s matrix of the half-space 
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k and its Fourier representation K. 

(2.1) 

k(x,) =8-l [K] = -!- 4n2 J,5 K(a,, a*, ~~)e-~(~‘~‘+“*~~)da~da~ 
I 2 

(2.2) 

Here 9-t is the inverse double Fourier transformation operator. The contours of integration rI and 
r2 are situated in the complex plane a1 and a2 along the real axes, deviating from them only when 
circumventing real poles and branching points of the integrand. The direction of circumvention is dictated 
by the limiting absorption principle [6]. The explicit form of the elements of the matrixKfor a uniform 
half-space is given, for example, in [6,8]. For further discussion it is important that the relation between 
K and zl, should have the form 

0, =Ja2 -x,2, Reo, ~0, Imo, 60 

a2 =a2 +a2. I 2. q =wIv,, x2=0/v 5 

(up and u, are the velocities of the P- and S-waves). 
Representation (2.1) gives the exact wave pattern over the whole half-space, but here we have to 

evaluate multiple integrals. For deep cracks, situated at a distance greater than several wavelengths h 
from the surface ( ]zt 1 %-A), it is quite sufficient to use their asymptotic representation. In the case in 
question the stationary points 

a ,,n = -x, coscpsin tp, a2,n = -x, sin cpsinv 

of the exponential components exp(o,zr - i(atxt + azyI)) of the integrands make the main contribution 
to the asymptotic form of integral (2.2) [8]. The corresponding asymptotic representation for the matrix 
k in (2.1) takes the form 

ix,R 

e, -57 Yl -r\, z,)= i k,(% voy + O(R-2) (2.3) ll=l 

Here cp and \~r are the angles of a spherical system of coordinates with centre at the current integration 
point (5, r, 0). 

Replacing integral (2.1) by the approximate cubature formula in the nodes (L, qrn) (m = 1, 2, . . ., 
M) and taking (2.3) into account we obtain the representation 

(2.4) 

a nm = ~“(cpm~WmhOkn~%l)%l 
in which (p,,*, vrn, R, are the coordinates of the point x1 considered in spherical systems connected with 
the nodes L,, n,, and S, 
step h we have s, = h2). 

are weighting factors of the cubature formula (for a uniform grid with 

The vector functions uol and uo2 describe volume P- and S-waves, respectively, excited in the far zone 
( ]zt 1, R,,, % h) of the surface load qo. According to representation (2.4) they are approximated by the 
superposition of spherical waves travelling from elementary sources specified at the nodes of the grid 
(L %J 

From the specified u. = u,$ we calculate the stresses r. = 7”uo, required to form the right-hand side 
of integral equation (1.4) where for x1 E L2 (in the zone far from the source) the action of the derivatives 
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occurring in T, on the components up (2.4) apart from terms 0(RG2), reduces to multiplication by 
certain functions of the spherical angles [8] 

a a a - + ix, cos(p, sin Wm, - + ix, sin (Pm sin Wm, - + ix, COSW, 
3x1 JY, 22, 

Although, for representation (2.4) to be applicable, the dimensions of the cells of the grid must be 
much less than the wavelength, this limitation does not lead to any appreciable costs in computing the 
field uo, since, in practice, the dimensions of the transducer are usually less than or comparable with 
the wavelength of the excited waves. In some special cases, for example, for a load q. uniformly 
distributed over a circular region, asymptotic representation (2.3) can be integrated with respect to 5 
and 7 in explicit form [9], which eliminates the need to use the approximation with respect to the angles 
(&V %n)* 

The distribution of the contact stresses qu depends on the type of source considered. For a source 
of vertical-type P-waves q. = (0, 0, o,> and for shear waves q. = {T,,, 0,O) (here o, and z, are constants 
or are defined in terms of the solution of the corresponding contact problem). 

In general, the so-called directional transducer of an electric signal excites a plane P- or S-wave in 
the piezoelectric crystal, which is incident at a certain angle y on its contact zone with the surface of 
the material (the upper right corner of Fig. 1). Refracted and partially reflected at the interface of the 
media, this wave also excites a field u$c in the material being probed. It is quite sufficient to take as q. 
the stress distribution obtained when a plane wave is incident on the interface of two elastic media [3]. 
The solution of this problem is well known [lo], where here it is also easy to take into account the specific 
contact conditions of the transducer, which may be either rigidly glued to the surface, or transmitting 
transverse oscillations (for numerical examples see the reference cited in the footnote). 

In the case of interfacial cracks, when the field up interacts with the interface z1 = -hi additional 
reflected, refracted and channelled (Stonely) waves arise, which must be taken into account in u. and 
r. when solving integral equation (1.4) and calculating W. In this case, to construct the asymptotic form 
of uo, one can also use an integral representation of the form (2.1), but with a kernel k for a double- 
layer half-space. In the asymptotic form obtained in this case we will take into account not only the 
boundary zi = - hi but also second-time reflection from the surface z1 = 0. The latter is necessary when 
investigating diffraction by surface cracks, when the value of h is comparatively small, for example, when 
monitoring the peeling of thin films. However, for the deep-lying cracks being considered here 
(h % h) the contribution of second-time reflections from zi = 0 can be neglected, thus reducing the 
asymptotic form u. to 

(2.5) 

where ui are the waves reflected and refracted at the boundary z1 = -h (z = 0 in the crack system 
of coordinates), considered as wave fields in the upper (z 3 0) and lower (z 6 0) half-spaces, excited 
by certain loads q*, applied to the surface z = 0. Like ur, these fields can be specified exactly in integral 
form (2.1) using Green’s matrices k’ of the corresponding half-spaces. 

The coordinate system x of the crack in this case is related to the system x1 by the equation 
x = x1 - x,, where x, = {x,, y,, -h} is the coordinate of the centre of the crack in system xi. A Fourier 
transformation of integral representations of the form (2.1) with respect to X, y for up and ui leads 
to the following functional matrix relations 

U$(a,,a,,z)= K’(a,,a2.t)Q’(q.a2) (2.6) 
e, = expl-i(a,x, + a2yc )I 

The symbols K and K- of Green’s matrices for the lower half-spaces z1 c 0 and z s 0 have the same 
form but differ in the values of the constants occurring in them (the wave numbers x1 and x2 for the 
velocities LJ, and us) for the upper and lower materials (-h s z1 G 0) and (zi c -h) respectively. The 
form of K for the upper half-space is obtained from K- by replacing o, by -0, (n = 1, 2) and also 
differs in the values of the material constants. 

The sewing conditions at the boundary2 = 0 
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“b”‘+“; =ug, $+qo+ =q, (2.7) 

enable us to eliminate the unknowns Q’ by expressing x also in terms of Qa (the arguments aI and a2 
- the Fourier transformation parameters - are largely omitted here and henceforth) 

Q- = L(K,‘T, - K, )Qoeo, Q’ = Q- - rhQoeo Gw 

L = [K,+ - K,]-‘, K; = K’(0) 

K, = Kc-h) = i K,e-Onh, T, = qK(z) jz=_,,= $ cKnConh 
ll=l II=, 

T,, = Tz(q, ct2, on), Tz(al, a2, d/d?) is the matrix Fourier transformation operator of the stresses for 
the area with normal Oz. 

Correspondingly, from relations (2.5) and (2.6) when z = 0 

U,(O) = K;Q- = i KOne-onheoQO (2.9) 

with Ken = &L(K~Tn -E)Kn and for the field uo(x,y, 0) = 9-l [U. (0)] incident on the crack, we arrive 
at an asymptotic representation of the same form as (2.4) in which 

R, =[(x+x, -cm>2 +(y+y, -q,,)2 +h2Jx 

(P,,, and vm are the corresponding angular coordinates of the point x E !J in a spherical system with centre 
(&,, rrn, 0), and the matrices K,, are replaced by Z&. 

The asymptotic representation obtained in this way takes into account both the initial wave field of 
the source UT and the additional volume waves which arise when it interacts with the boundary between 
the materials. As regards the excited Stonely-type channelled waves, they ae described by the contribution 
of the residues to the real poles U0 close to the real axis. In the case in question they are specified by 
poles of the elements of the matrix L in (2.8) (see relations (3.1) below), i.e. by the zeros of the 
determinant of the matrix&$ - Ki, which are identical with the characteristic equation for the Stonely 
wave. Channelled waves play an important role in remote sounding along the connection boundaries, 
for example, in the flaw detection of the welded joints of pipelines. Their contribution to the overall 
asymptotic form of the incident field u. was also taken into account in this model. 

3. THE INTEGRAL EQUATION 

By construction 141, the matrix L (a,, a2), occurring in expression (2.8) is the symbol of the kernel of 
integral equation (1.4). For the joining of materials-of different moduluses 

(ia:PJe -a~Mo,)/a2 -a,cxz(Mo, +iNo)/a2 -iCr, PO 

L(a,,a,,a)= -a,a,(M,, +iNo)la2 (iafN, -aiM,,)/a* -ia, PO 

ia, PO ia, PO -402 

where 

Moj = Mi 
M,M2 -a2(P, -F;)* ’ 

j=1,2 

PO = 6 - 6 
M,M2 -a2(P2 -e>2 ’ 

No=; 
N, +N2 

the functions Mj and Ni (j = I2 2) take the form 

(3.1) 

I 
Nj (a) = - 

Pj”2j 
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and 

p,(a)=+ a2-;x:j ( -blja2j 
J 1 

*j(a)=*~j(-(a2-fx:j)2+a2~,ja*j) 

ay = Ja’ - nij, Reoy 5 0, ImOkj ~0, k,j=1,2 

xlj = WlV,j, X*j =wlvsj, a2 =a: +a2, 

Unlike the case of a crack in a uniform medium, the matrix L obtained here is filled and system (1.4) 
does not split into independent equations in the normal and tangential components of the 
displacement jump. Nevertheless the variational-difference method is completely applicable in this case. 
As a result of applying it, a program was written which enables approximate solutions of system (1.4) 
to be obtained on a personal computer. These solutions are necessary both to determine the scattering 
patterns and the energy scattering coefficient Z when a plane wave is incident on an interfacial crack 
at an arbitrary angle, and also the coefficient W for the specified source. This enables one to take into 
account the influence of the ratios of the elastic properties of the materials, in addition to the shape 
and orientation of crack. For example, Fig. 3 illustrates the influence of the ratio of the velocities of 
the S-waves on the form of the dependence of X on the dimensionless parameter x12a for a square crack 
of side 2u for normal incidence of a plane P-wave. 

It should be noted that, instead of (2.7) one can also consider other material joining conditions, for 
example, which describe non-absolute contact, when the deformation and elastic properties of a layer 
of infinitesimal thickness in a glued or welded connection is taken into account. These conditions are 
given by the matrix relation 

when z = 0 

in which the elements of the matrix B depend on the properties of the layer and the frequency [ll], or 
in the form of a spring contact [12] 

3 6 K2a 

Fig. 3 
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7 + = 7- = 7, u+-u+ =C7 whenz=O (3.2) 

The scheme described above for constructing a solution, on the whole, remains as before and only the 
specific form of the symbol of the kernel of the integral equation and the asymptotic forms of the wave 
fields are changes. 

We wish to thank A. Bostrom (Goteborg, Sweden) who pointed out the advantage of using the 
generalized Auld coefficient in the model. 
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